Adrian
4 min readSep 12, 2024
Graphical Representation Series

Aesthetics in Graphical Representation: 10 Quotes

“Good design looks right. It is simple (clear and uncomplicated). Good design is also elegant, and does not look contrived. A map should be aesthetically pleasing, thought provoking, and communicative.” (Arthur H Robinson, “Elements of Cartography”, 1953)

“The practice of framing an illustration with a drawn rectangle is not recommended. This kind of typographic detailing should never be added purely for aesthetic reasons or for decoration. A simple, purely functional drawing will automatically be aesthetically pleasing. Unnecessary lines usually reduce both legibility and attractiveness.” (Linda Reynolds & Doig Simmonds, “Presentation of Data in Science” 4th Ed, 1984)

“The main goal of data visualization is its ability to visualize data, communicating information clearly and effectively. It doesn’t mean that data visualization needs to look boring to be functional or extremely sophisticated to look beautiful. To convey ideas effectively, both aesthetic form and functionality need to go hand in hand, providing insights into a rather sparse and complex dataset by communicating its key aspects in a more intuitive way. Yet designers often tend to discard the balance between design and function, creating gorgeous data visualizations which fail to serve its main purpose — communicate information.” (Vitaly Friedman, “Data Visualization and Infographics”, Smashing Magazine, 2008)

“For a visual to qualify as beautiful, it must be aesthetically pleasing, yes, but it must also be novel, informative, and efficient. […] For a visual to truly be beautiful, it must go beyond merely being a conduit for information and offer some novelty: a fresh look at the data or a format that gives readers a spark of excitement and results in a new level of understanding. Well-understood formats (e.g., scatterplots) may be accessible and effective, but for the most part they no longer have the ability to surprise or delight us. Most often, designs that delight us do so not because they were designed to be novel, but because they were designed to be effective; their novelty is a byproduct of effectively revealing some new insight about the world.” (Noah Iliinsky, “On Beauty”, [in “Beautiful Visualization”] 2010)

“[…] the form of a technological object must depend on the tasks it should help with. This is one of the most important principles to remember when dealing with infographics and visualizations: The form should be constrained by the functions of your presentation. There may be more than one form a data set can adopt so that readers can perform operations with it and extract meanings, but the data cannot adopt any form. Choosing visual shapes to encode information should not be based on aesthetics and personal tastes alone.” (Alberto Cairo, “The Functional Art”, 2011)

“Data art is characterized by a lack of structured narrative and absence of any visual analysis capability. Instead, the motivation is much more about creating an artifact, an aesthetic representation or perhaps a technical/technique demonstration. At the extreme end, a design may be more guided by the idea of fun or playfulness or maybe the creation of ornamentation.” (Andy Kirk, “Data Visualization: A successful design process”, 2012)

“Good visualization is a winding process that requires statistics and design knowledge. Without the former, the visualization becomes an exercise only in illustration and aesthetics, and without the latter, one of only analyses. On their own, these are fine skills, but they make for incomplete data graphics. Having skills in both provides you with the luxury — which is growing into a necessity — to jump back and forth between data exploration and storytelling.” (Nathan Yau, “Data Points: Visualization That Means Something”, 2013)

“Visualization can be appreciated purely from an aesthetic point of view, but it’s most interesting when it’s about data that’s worth looking at. That’s why you start with data, explore it, and then show results rather than start with a visual and try to squeeze a dataset into it. It’s like trying to use a hammer to bang in a bunch of screws. […] Aesthetics isn’t just a shiny veneer that you slap on at the last minute. It represents the thought you put into a visualization, which is tightly coupled with clarity and affects interpretation.” (Nathan Yau, “Data Points: Visualization That Means Something”, 2013)

“A semantic approach to visualization focuses on the interplay between charts, not just the selection of charts themselves. The approach unites the structural content of charts with the context and knowledge of those interacting with the composition. It avoids undue and excessive repetition by instead using referential devices, such as filtering or providing detail-on-demand. A cohesive analytical conversation also builds guardrails to keep users from derailing from the conversation or finding themselves lost without context. Functional aesthetics around color, sequence, style, use of space, alignment, framing, and other visual encodings can affect how users follow the script.” (Vidya Setlur & Bridget Cogley, “Functional Aesthetics for data visualization”, 2022)

“As beautiful as data can be, it’s not an al fresco painting that should be open to interpretation from anyone who walks by its section of the museum. Make bold, smart color choices that leave no doubt what the purpose of the data is.” (Kate Strachnyi, “ColorWise: A Data Storyteller’s Guide to the Intentional Use of Color”, 2023)

More quotes on “Aesthetics” in Graphical Representation at sql-troubles.blogspot.com.

Adrian
Adrian

Written by Adrian

IT professional/blogger with more than 24 years experience in IT - Software Engineering, BI & Analytics, Data, Project, Quality, Database & Knowledge Management

No responses yet