Adrian
3 min readMar 19, 2024

Book Review: Laurent Bossavit’s “The Leprechauns of Software Engineering (2015)

Software Engineering should be the “establishment and use of sound engineering principles to obtain economically software that is reliable and works on real machines efficiently” [2]. Working for more than 20 years in the field I feel sometimes that its foundation is a strange mix of sound and questionable ideas that take the form of methodologies, principles, standards, myths, folklore, statistics and other similar concepts that form its backbone.

I tend to look with critical eyes at the important numbers advanced in research and pseudo-scientific papers especially when they’re related to my job, this because I know that statistics are seldom what they appear to be — there are accidental and sometimes even intended errors made to support the facts. Unfortunately, the missing row data and often the information about the methodologies used in collecting and processing the respective data make numbers and/or graphics’ understanding more challenging, not to mention the considerable amount of effort and time spent to uncover the evidence trail.

Fortunately, there are other professionals who went further down the path of bibliographical references and shared their findings in blogs, papers, books and other media content. It’s also the case of Laurent Bossavit, who in his book, “ The Leprechauns of Software Engineering” (2015), looks behind some of the numbers that over time become part of the leprechaunish folklore of IT professionals, puts them into the historical context and provides in appendix the evidence trails for the reader to validate his findings. Over several chapters the author focuses mainly on the cost of defects, Boehm’s cone of uncertainty, the differences in productivity amount individual programmers (aka 10x claim), respectively the relation between poor requirements and defects.

His most important finding is that the references used in most of the researched sources advancing the above numbers were secondary, while the actual sources provide no direct information of empirical data or the methodology for its collection. The way the numbers are advanced and used makes one question the validity of the measurements performed, respectively the character of the mistakes the authors made. Many of the cited papers hardly match the academic requirements of other scientific fields, being a mix of false claims, improperly conducted research and citations.

Secondly, he argues that the small sample sizes used as basis for the experiments, the small population formed usually of students, respectively the way numbers were mixed without any reliable scientific character makes him (and the reader as well) question even more how the experiments were performed in the respective papers. With this, it is more likely that a bigger number of research based on these sources should raise further concerns. The reader can thus ask himself/herself how deep the domino effect goes inside of the Software Engineering field.

In author’s opinion Software Engineering as social process “needs to be studied with tools that borrow as much from the social and cognitive sciences as they do from the mathematical theories of computation”. How much is possible to extend the theories and models of the respective fields is an open topic. The bottom line, the field of Software Engineering needs better and scientific empirical experiments that are based on commonly agreed definitions, data collection and processing techniques, respectively higher standards for research publications. Without this, we’ll continue to compare apples with peaches and mix them in calculations so we can get some stories that support our leprechaunish theories.

Overall, the book is a good read for software engineers as well as for other IT professionals. Even if it barely scratched the surface of software myths and folklore, there’s enough material for the readers who want to dive deeper.

References:
[1] Laurent Bossavit (2015) “The Leprechauns of Software Engineering”
[2] Friedrich Bauer (1972) “Software Engineering”, Information Processing

Originally published at https://sql-troubles.blogspot.com.

Adrian

IT professional/blogger with more than 24 years experience in IT - Software Engineering, BI & Analytics, Data, Project, Quality, Database & Knowledge Management