Adrian
4 min readNov 22, 2020
Systems Thinking Series

Networks in Systems Thinking: 10 Quotes

“Information is recorded in vast interconnecting networks. Each idea or image has hundreds, perhaps thousands, of associations and is connected to numerous other points in the mental network.” (Peter Russell, “The Brain Book: Know Your Own Mind and How to Use it”, 1979)

“We define a semantic network as ‘the collection of all the relationships that concepts have to other concepts, to percepts, to procedures, and to motor mechanisms’ of the knowledge.” (John F Sowa, “Conceptual Structures”, 1984)

“When loops are present, the network is no longer singly connected and local propagation schemes will invariably run into trouble. […] If we ignore the existence of loops and permit the nodes to continue communicating with each other as if the network were singly connected, messages may circulate indefinitely around the loops and process may not converges to a stable equilibrium. […] Such oscillations do not normally occur in probabilistic networks […] which tend to bring all messages to some stable equilibrium as time goes on. However, this asymptotic equilibrium is not coherent, in the sense that it does not represent the posterior probabilities of all nodes of the network.” (Judea Pearl, “Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference”, 1988)

“A neural network is a massively parallel distributed processor that has a natural propensity for storing experiential knowledge and making it available for use. It resembles the brain in two respects: 1. Knowledge is acquired by the network through a learning process. 2. Interneuron connection strengths known as synaptic weights are used to store the knowledge.” (Igor Aleksander, “An introduction to neural computing”, 1990)

“What is a system? A system is a network of interdependent components that work together to try to accomplish the aim of the system. A system must have an aim. Without an aim, there is no system. The aim of the system must be clear to everyone in the system. The aim must include plans for the future. The aim is a value judgment.” (William E Deming, “The New Economics for Industry, Government, Education”, 1993)

“In the new systems thinking, the metaphor of knowledge as a building is being replaced by that of the network. As we perceive reality as a network of relationships, our descriptions, too, form an interconnected network of concepts and models in which there are no foundations. For most scientists such a view of knowledge as a network with no firm foundations is extremely unsettling, and today it is by no means generally accepted. But as the network approach expands throughout the scientific community, the idea of knowledge as a network will undoubtedly find increasing acceptance.” (Fritjof Capra, “The Web of Life: A new scientific understanding of living systems”, 1996)

“One of the key insights of the systems approach has been the realization that the network is a pattern that is common to all life. Wherever we see life, we see networks.” (Fritjof Capra, “The Hidden Connections: A Science for Sustainable Living”, 2002)

“Networks may also be important in terms of view. Many models assume that agents are bunched together on the head of a pin, whereas the reality is that most agents exist within a topology of connections to other agents, and such connections may have an important influence on behavior. […] Models that ignore networks, that is, that assume all activity takes place on the head of a pin, can easily suppress some of the most interesting aspects of the world around us. In a pinhead world, there is no segregation, and majority rule leads to complete conformity — outcomes that, while easy to derive, are of little use.” (John H Miller & Scott E Page, “Complex Adaptive Systems”, 2007)

“In the network society, the space of flows dissolves time by disordering the sequence of events and making them simultaneous in the communication networks, thus installing society in structural ephemerality: being cancels becoming.” (Manuel Castells, “Communication Power”, 2009)

“Although cascading failures may appear random and unpredictable, they follow reproducible laws that can be quantified and even predicted using the tools of network science. First, to avoid damaging cascades, we must understand the structure of the network on which the cascade propagates. Second, we must be able to model the dynamical processes taking place on these networks, like the flow of electricity. Finally, we need to uncover how the interplay between the network structure and dynamics affects the robustness of the whole system.” (Albert-László Barabási, “Network Science”, 2016)

More quotes on “Networks” at the-web-of-knowledge.blogspot.com.

Adrian
Adrian

Written by Adrian

IT professional/blogger with more than 24 years experience in IT - Software Engineering, BI & Analytics, Data, Project, Quality, Database & Knowledge Management