3 min readOct 18, 2023


Graphical Representation Series

On Insights II: The Complexity Perspective

Scientists attempt to discover laws and principles, and for this they conduct experiments, build theories and models rooted in the data they collect. In the business setup, data professionals analyze the data for identifying patterns, trends, outliers or anything else that can lead to new information or knowledge. On one side scientists chose the boundaries of the systems they study, while for data professionals even if the systems are usually given, they can make similar choices.

In theory, scientists are more flexible in what data they collect, though they might have constraints imposed by the boundaries of their experiments and the tools they use. For data professionals most of the data they need is already there, in the systems the business uses, though the constraints reside in the intrinsic and extrinsic quality of the data, whether the data are fit for the purpose. Both parties need to work around limitations, or attempt to improve the experiments, respectively the systems.

Even if the data might have different characteristics, this doesn’t mean that the methods applied by data professionals can’t be used by scientists and vice-versa. The closer data professionals move from Data Analytics to Data Science, the higher the overlap between the business and scientific setup.

Conversely, the problems data professionals meet have different characteristics. Scientists outlook is directed mainly at the phenomena and processes occurring in nature and society, where randomness, emergence and chaos seem to feel at home. Business processes deal more with predefined controlled structures, cyclicity, higher dependency between processes, feedback and delays. Even if the problems may seem to be different, they can be modeled with systems dynamics.

Returning to data visualization and the problem of insight, there are multiple questions. Can we use simple designs or characterizations to find the answer to complex problems? Which must be the characteristics of a piece of information or knowledge to generate insight? How can a simple visualization generate an insight moment?

Appealing to complexity theory, there are several general approaches in handling complexity. One approach resides in answering complexity with complexity. This means building complex data visualizations that attempt to model problem’s complexity. For example, this could be done by building a complex model that reflects the problem studied, and build a set of complex visualizations that reflect the different important facets. Many data professionals advise against this approach as it goes against the simplicity principle. On the other hand, starting with something complex and removing the nonessential can prove to be an approachable strategy, even if it involves more effort.

Another approach resides in reducing the complexity of the problem either by relaxing the constraints, or by breaking the problem into simple problems and addressing each one of them with visualizations. Relaxing the constraints allow studying upon case a more general problem or a linearization of the initial problem. Breaking down the problem into problems that can be easier solved, can help to better understand the general problem though we might lose the sight of emergence and other behavior that characterize complex systems.

Providing simple visualizations to complex problems implies a good understanding of the problem, its solution(s) and the overall context, which frankly is harder to achieve the more complex a problem is. For its understanding a problem requires a minimum of knowledge that needs to be reflected in the visualization(s). Even if some important aspects are assumed as known, they still need to be confirmed by the visualizations, otherwise any deviation from assumptions can lead to a new problem. Therefore, its questionable that simple visualizations can address the complexity of the problems in a general manner.

Originally published at




IT professional/blogger with more than 24 years experience in IT - Software Engineering, BI & Analytics, Data, Project, Quality, Database & Knowledge Management